Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.905
Filtrar
1.
Sci Rep ; 14(1): 9365, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654026

RESUMO

Strategies against the opportunistic fungal pathogen Candida albicans based on probiotic microorganisms represent a promising alternative to traditional antifungals. Here, we investigated the effects of Lactobacillaceae isolates from fermented foods or the human vagina, alone or in combination with the probiotic yeast Saccharomyces cerevisiae CNCM I-3856, against C. albicans in vitro. Nine out of nineteen tested strains of Lactobacillaceae inhibited growth of C. albicans with inhibition zones of 1-3 mm in spot assays. Five out of nineteen lactobacilli tested as such or in combination with S. cerevisiae CNCM I-3856 also significantly inhibited C. albicans hyphae formation, including Limosilactobacillus fermentum LS4 and L. fermentum LS5 resulting in respectively 62% and 78% hyphae inhibition compared to the control. Thirteen of the tested nineteen lactobacilli aggregated with the yeast form of C. albicans, with Lactiplantibacillus carotarum AMBF275 showing the strongest aggregation. The aggregation was enhanced when lactobacilli were combined with S. cerevisiae CNCM I-3856. No significant antagonistic effects were observed between the tested lactobacilli and S. cerevisiae CNCM I-3856. The multifactorial activity of Lactobacillaceae strains alone or combined with the probiotic S. cerevisiae CNCM I-3856 against C. albicans without antagonistic effects between the beneficial strains, paves the way for developing consortium probiotics for in vivo applications.


Assuntos
Candida albicans , Lactobacillus , Probióticos , Saccharomyces cerevisiae , Candida albicans/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/efeitos dos fármacos , Probióticos/farmacologia , Lactobacillus/fisiologia , Humanos , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Antibiose , Feminino , Vagina/microbiologia
2.
Nature ; 627(8004): 620-627, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448595

RESUMO

The fungus Candida albicans frequently colonizes the human gastrointestinal tract, from which it can disseminate to cause systemic disease. This polymorphic species can transition between growing as single-celled yeast and as multicellular hyphae to adapt to its environment. The current dogma of C. albicans commensalism is that the yeast form is optimal for gut colonization, whereas hyphal cells are detrimental to colonization but critical for virulence1-3. Here, we reveal that this paradigm does not apply to multi-kingdom communities in which a complex interplay between fungal morphology and bacteria dictates C. albicans fitness. Thus, whereas yeast-locked cells outcompete wild-type cells when gut bacteria are absent or depleted by antibiotics, hyphae-competent wild-type cells outcompete yeast-locked cells in hosts with replete bacterial populations. This increased fitness of wild-type cells involves the production of hyphal-specific factors including the toxin candidalysin4,5, which promotes the establishment of colonization. At later time points, adaptive immunity is engaged, and intestinal immunoglobulin A preferentially selects against hyphal cells1,6. Hyphal morphotypes are thus under both positive and negative selective pressures in the gut. Our study further shows that candidalysin has a direct inhibitory effect on bacterial species, including limiting their metabolic output. We therefore propose that C. albicans has evolved hyphal-specific factors, including candidalysin, to better compete with bacterial species in the intestinal niche.


Assuntos
Candida albicans , Proteínas Fúngicas , Microbioma Gastrointestinal , Hifas , Intestinos , Micotoxinas , Simbiose , Animais , Feminino , Humanos , Masculino , Camundongos , Bactérias/crescimento & desenvolvimento , Bactérias/imunologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/imunologia , Candida albicans/metabolismo , Candida albicans/patogenicidade , Proteínas Fúngicas/metabolismo , Microbioma Gastrointestinal/imunologia , Hifas/crescimento & desenvolvimento , Hifas/imunologia , Hifas/metabolismo , Imunoglobulina A/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Micotoxinas/metabolismo , Virulência
3.
Microb Pathog ; 190: 106604, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490458

RESUMO

Early blight caused by Alternaria solani is a common foliar disease of potato around the world, and serious infections result in reduced yields and marketability due to infected tubers. The major aim of this study is to figure out the synergistic effect between microorganism and fungicides and to evaluate the effectiveness of Bacillus subtilis NM4 in the control of early blight in potato. Based on its colonial morphology and a 16S rRNA analysis, a bacterial antagonist isolated from kimchi was identified as B. subtilis NM4 and it has strong antifungal and anti-oomycete activity against several phytopathogenic fungi and oomycetes. The culture filtrate of strain NM4 with the fungicide effectively suppressed the mycelial growth of A. solani, with the highest growth inhibition rate of 83.48%. Although exposure to culture filtrate prompted hyphal alterations in A. solani, including bulging, combining it with the fungicide caused more severe hyphal damage with continuous bulging. Surfactins and fengycins, two lipopeptide groups, were isolated and identified as the main compounds in two fractions using LC-ESI-MS. Although the surfactin-containing fraction failed to inhibit growth, the fengycin-containing fraction, alone and in combination with chlorothalonil, restricted mycelial development, producing severe hyphal deformations with formation of chlamydospores. A pot experiment combining strain NM4, applied as a broth culture, with fungicide, at half the recommended concentration, resulted in a significant reduction in potato early blight severity. Our results indicate the feasibility of an integrated approach for the management of early blight in potato that can reduce fungicide application rates, promoting a healthy ecosystem in agriculture.


Assuntos
Alternaria , Bacillus subtilis , Fungicidas Industriais , Lipopeptídeos , Nitrilas , Doenças das Plantas , Solanum tuberosum , Solanum tuberosum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Alternaria/efeitos dos fármacos , Alternaria/crescimento & desenvolvimento , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Fungicidas Industriais/farmacologia , Nitrilas/farmacologia , Lipopeptídeos/farmacologia , RNA Ribossômico 16S/genética , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Peptídeos Cíclicos/farmacologia
4.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35169080

RESUMO

Cellular development is orchestrated by evolutionarily conserved signaling pathways, which are often pleiotropic and involve intra- and interpathway epistatic interactions that form intricate, complex regulatory networks. Cryptococcus species are a group of closely related human fungal pathogens that grow as yeasts yet transition to hyphae during sexual reproduction. Additionally, during infection they can form large, polyploid titan cells that evade immunity and develop drug resistance. Multiple known signaling pathways regulate cellular development, yet how these are coordinated and interact with genetic variation is less well understood. Here, we conducted quantitative trait locus (QTL) analyses of a mapping population generated by sexual reproduction of two parents, only one of which is unisexually fertile. We observed transgressive segregation of the unisexual phenotype among progeny, as well as a large-cell phenotype under mating-inducing conditions. These large-cell progeny were found to produce titan cells both in vitro and in infected animals. Two major QTLs and corresponding quantitative trait genes (QTGs) were identified: RIC8 (encoding a guanine-exchange factor) and CNC06490 (encoding a putative Rho-GTPase activator), both involved in G protein signaling. The two QTGs interact epistatically with each other and with the mating-type locus in phenotypic determination. These findings provide insights into the complex genetics of morphogenesis during unisexual reproduction and pathogenic titan cell formation and illustrate how QTL analysis can be applied to identify epistasis between genes. This study shows that phenotypic outcomes are influenced by the genetic background upon which mutations arise, implicating dynamic, complex genotype-to-phenotype landscapes in fungal pathogens and beyond.


Assuntos
Criptococose/genética , Cryptococcus/genética , Epistasia Genética/genética , Evolução Biológica , Cryptococcus/metabolismo , Cryptococcus/patogenicidade , Proteínas Fúngicas/genética , Genes Fúngicos Tipo Acasalamento/genética , Hifas/crescimento & desenvolvimento , Morfogênese , Fenótipo , Locos de Características Quantitativas/genética , Reprodução/genética , Reprodução Assexuada
5.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163522

RESUMO

Plant diseases that are caused by fungi and nematodes have become increasingly serious in recent years. However, there are few pesticide chemicals that can be used for the joint control of fungi and nematodes on the market. To solve this problem, a series of novel 1,2,4-oxadiazole derivatives containing amide fragments were designed and synthesized. Additionally, the bioassays revealed that the compound F15 demonstrated excellent antifungal activity against Sclerotinia sclerotiorum (S. sclerotiorum) in vitro, and the EC50 value of that was 2.9 µg/mL, which is comparable with commonly used fungicides thifluzamide and fluopyram. Meanwhile, F15 demonstrated excellent curative and protective activity against S. sclerotiorum-infected cole in vivo. The scanning electron microscopy results showed that the hyphae of S. sclerotiorum treated with F15 became abnormally collapsed and shriveled, thereby inhibiting the growth of the hyphae. Furthermore, F15 exhibited favorable inhibition against the succinate dehydrogenase (SDH) of the S. sclerotiorum (IC50 = 12.5 µg/mL), and the combination mode and binding ability between compound F15 and SDH were confirmed by molecular docking. In addition, compound F11 showed excellent nematicidal activity against Meloidogyne incognita at 200 µg/mL, the corrected mortality rate was 93.2%, which is higher than that of tioxazafen.


Assuntos
Antifúngicos/síntese química , Ascomicetos/crescimento & desenvolvimento , Oxidiazóis/síntese química , Succinato Desidrogenase/metabolismo , Amidas/química , Antifúngicos/química , Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Linhagem Celular , Desenho de Fármacos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Oxidiazóis/química , Oxidiazóis/farmacologia , Plantas/efeitos dos fármacos , Plantas/microbiologia , Plantas/parasitologia , Conformação Proteica , Relação Estrutura-Atividade , Succinato Desidrogenase/química
6.
Microbiol Spectr ; 10(1): e0206321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107348

RESUMO

Septation in filamentous fungi is a normal part of development, which involves the formation of cross-hyphal bulkheads, typically containing pores, allowing cytoplasmic streaming between compartments. Based on previous findings regarding septa and cell wall stress, we hypothesized that septa are critical for survival during cell wall stress. To test this hypothesis, we used known Aspergillus nidulans septation-deficient mutants (ΔsepH, Δbud3, Δbud4, and Δrho4) and six antifungal compounds. Three of these compounds (micafungin, Congo red, and calcofluor white) are known cell wall stressors which activate the cell wall integrity signaling pathway (CWIS), while the three others (cycloheximide, miconazole, and 2,3-butanedione monoxime) perturb specific cellular processes not explicitly related to the cell wall. Our results show that deficiencies in septation lead to fungi which are more susceptible to cell wall-perturbing compounds but are no more susceptible to other antifungal compounds than a control. This implies that septa play a critical role in surviving cell wall stress. IMPORTANCE The ability to compartmentalize potentially lethal damage via septation appears to provide filamentous fungi with a facile means to tolerate diverse forms of stress. However, it remains unknown whether this mechanism is deployed in response to all forms of stress or is limited to specific perturbations. Our results support the latter possibility by showing that presence of septa promotes survival in response to cell wall damage but plays no apparent role in coping with other unrelated forms of stress. Given that cell wall damage is a primary effect caused by exposure to the echinocandin class of antifungal agents, our results emphasize the important role that septa might play in enabling resistance to these drugs. Accordingly, the inhibition of septum formation could conceivably represent an attractive approach to potentiating the effects of echinocandins and mitigating resistance in human fungal pathogens.


Assuntos
Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/fisiologia , Parede Celular/fisiologia , Antifúngicos/farmacologia , Aspergillus nidulans/efeitos dos fármacos , Aspergillus nidulans/genética , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Vermelho Congo/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifas/efeitos dos fármacos , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Micafungina/farmacocinética , Viabilidade Microbiana/efeitos dos fármacos , Estresse Fisiológico
7.
PLoS Genet ; 18(1): e1009622, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34982775

RESUMO

Ssn3, also known as Cdk8, is a member of the four protein Cdk8 submodule within the multi-subunit Mediator complex involved in the co-regulation of transcription. In Candida albicans, the loss of Ssn3 kinase activity affects multiple phenotypes including cellular morphology, metabolism, nutrient acquisition, immune cell interactions, and drug resistance. In these studies, we generated a strain in which Ssn3 was replaced with a functional variant of Ssn3 that can be rapidly and selectively inhibited by the ATP analog 3-MB-PP1. Consistent with ssn3 null mutant and kinase dead phenotypes, inhibition of Ssn3 kinase activity promoted hypha formation. Furthermore, the increased expression of hypha-specific genes was the strongest transcriptional signal upon inhibition of Ssn3 in transcriptomics analyses. Rapid inactivation of Ssn3 was used for phosphoproteomic studies performed to identify Ssn3 kinase substrates associated with filamentation potential. Both previously validated and novel Ssn3 targets were identified. Protein phosphorylation sites that were reduced specifically upon Ssn3 inhibition included two sites in Flo8 which is a transcription factor known to positively regulate C. albicans morphology. Mutation of the two Flo8 phosphosites (threonine 589 and serine 620) was sufficient to increase Flo8-HA levels and Flo8 dependent transcriptional and morphological changes, suggesting that Ssn3 kinase activity negatively regulates Flo8.Under embedded conditions, when ssn3Δ/Δ and efg1Δ/Δ mutants were hyperfilamentous, FLO8 was essential for hypha formation. Previous work has also shown that loss of Ssn3 activity leads to increased alkalinization of medium with amino acids. Here, we show that the ssn3Δ/Δ medium alkalinization phenotype, which is dependent on STP2, a transcription factor involved in amino acid utilization, also requires FLO8 and EFG1. Together, these data show that Ssn3 activity can modulate Flo8 and its direct and indirect interactions in different ways, and underscores the potential importance of considering Ssn3 function in the control of transcription factor activities.


Assuntos
Candida albicans/patogenicidade , Quinase 8 Dependente de Ciclina/genética , Proteômica/métodos , Purinas/farmacologia , Fatores de Transcrição/metabolismo , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Mutação com Perda de Função , Fosforilação , Fatores de Transcrição/genética
8.
Microbiol Spectr ; 10(1): e0006321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34985327

RESUMO

Filamentous fungi form multicellular hyphae, which generally form pellets in liquid shake cultures, during the vegetative growth stage. Because of these characteristics, growth-monitoring methods commonly used in bacteria and yeast have not been applied to filamentous fungi. We have recently revealed that the cell wall polysaccharide α-1,3-glucan and extracellular polysaccharide galactosaminogalactan (GAG) contribute to hyphal aggregation in Aspergillus oryzae. Here, we tested whether Aspergillus fumigatus shows dispersed growth in liquid media that can be quantitatively monitored, similar to that of yeasts. We constructed a double disruptant mutant of both the primary α-1,3-glucan synthase gene ags1 and the putative GAG synthase gene gtb3 in A. fumigatus AfS35 and found that the hyphae of this mutant were fully dispersed. Although the mutant lost α-1,3-glucan and GAG, its growth and susceptibility to antifungal agents were not different from those of the parental strain. Mycelial weight of the mutant in shake-flask cultures was proportional to optical density for at least 18 h. We were also able to quantify the dose response of hyphal growth to antifungal agents by measuring optical density. Overall, we established a convenient strategy to monitor A. fumigatus hyphal growth. Our method can be directly used for screening for novel antifungals against Aspergillus species. IMPORTANCE Filamentous fungi generally form hyphal pellets in liquid culture. This property prevents filamentous fungi so that we may apply the methods used for unicellular organisms such as yeast and bacteria. In the present study, by using the fungal pathogen Aspergillus fumigatus strain with modified hyphal surface polysaccharides, we succeeded in monitoring the hyphal growth quantitatively by optical density. The principle of this easy measurement by optical density could lead to a novel standard of hyphal quantification such as those that have been used for yeasts and bacteria. Dose response of hyphal growth by antifungal agents could also be monitored. This method could be useful for screening for novel antifungal reagents against Aspergillus species.


Assuntos
Aspergillus fumigatus/química , Aspergillus fumigatus/crescimento & desenvolvimento , Meios de Cultura/metabolismo , Espectrofotometria/métodos , Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Parede Celular/genética , Parede Celular/metabolismo , Meios de Cultura/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucanos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Hifas/química , Hifas/efeitos dos fármacos , Hifas/genética , Hifas/crescimento & desenvolvimento , Micélio/química , Micélio/efeitos dos fármacos , Micélio/genética , Micélio/crescimento & desenvolvimento
9.
Biochem Biophys Res Commun ; 591: 88-94, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34999259

RESUMO

Candida albicans is an important opportunistic fungus in the clinic. In recent years, with the widespread use of antibiotics, drug-resistant strains have been isolated in the clinic, so finding new drug targets has become an urgent problem to be solved. The vacuole and mitochondria patch (vCLAMP) and the ER-mitochondria encounter structure (ERMES) are new types of inner membrane junction systems in Saccharomyces cerevisiae. However, the functions in maintaining cell survival of the two structures have not yet been elucidated in C. albicans. In this study, VAM6 and MDM34 knockout mutants (vam6Δ/Δmet-MDM34) were constructed using an induction system regulated by the MET3 promoter. PI-positive assays showed that deletion of vCLAMP and ERMES led to abnormal growth of C. albicans. Furthermore, the vam6Δ/Δmet-MDM34 mutant exhibited obvious mitochondrial fragmentation, mtDNA damage, reduced ATP levels, and abnormal mitochondrial membrane potential, indicating its important role in maintaining the structures and functions of mitochondria. Moreover, deletion of vCLAMP and ERMES inhibited filamentous growth. Overall This study shows that vCLAMP and ERMES play important roles in maintaining the survival of C. albicans cells.


Assuntos
Candida albicans/citologia , Candida albicans/metabolismo , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Vacúolos/metabolismo , Candida albicans/crescimento & desenvolvimento , Sobrevivência Celular , Proteínas Fúngicas/metabolismo , Hifas/crescimento & desenvolvimento
10.
Microbiol Spectr ; 10(1): e0116921, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019692

RESUMO

Seborrheic dermatitis (SD) is a common, chronic, and relapsing skin disease. The roles of Malassezia spp. in the pathogenesis of SD are still not clear due to the lack of direct evidence for the existence of hyphae within affected skin tissues. We set out to elucidate if Malassezia mycelium contributes to the onset and development of SD and if Malassezia mycelium is correlated with the clinical severity of SD patients. We detected Malassezia hyphae in patients with SD using potassium hydroxide (KOH) and calcofluor white (CFW) staining. Fluorescent microscopy was performed for the analysis of fungal cell wall and morphological characteristics of Malassezia under CFW staining. Culture growth in modified Dixon agar was used for DNA extraction and sequencing, and Malassezia species were confirmed by a sequencing data BLAST search against the NCBI database. We demonstrated that Malassezia hyphae were positively correlated with the clinical severity of SD patients (P = 3.1738 × 10-11). All the patients responded well to antifungal treatment. There is no significant difference for species dominance across the variant groups. However, the exact molecular mechanisms of how Malassezia spp. affect SD need to be further explored. The results show that Malassezia spp. in the hyphal stage are restricted to SD patients compared with healthy controls, suggesting that the presence of Malassezia hyphae contributes to the pathogenesis of SD. The results highlight the importance of the antifungal therapy for the future treatment of SD patients. IMPORTANCE Our results support the proposal that the hyphal form of Malassezia could be one of the pathogenic factors that contribute to SD, which has been previously less well studied. This clinical observation paves the way for further investigations of the molecular mechanisms of Malassezia hyphal pathogenicity in SD.


Assuntos
Dermatite Seborreica/microbiologia , Dermatomicoses/microbiologia , Hifas/crescimento & desenvolvimento , Malassezia/isolamento & purificação , Adulto , Antifúngicos/uso terapêutico , Dermatite Seborreica/tratamento farmacológico , Dermatomicoses/tratamento farmacológico , Feminino , Humanos , Hifas/efeitos dos fármacos , Hifas/genética , Hifas/isolamento & purificação , Malassezia/efeitos dos fármacos , Malassezia/genética , Malassezia/crescimento & desenvolvimento , Masculino , Pessoa de Meia-Idade , Pele/microbiologia
11.
Cell Rep ; 38(1): 110187, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986345

RESUMO

Candida albicans is both a commensal and an opportunistic fungal pathogen. Invading hyphae of C. albicans secrete candidalysin, a pore-forming peptide toxin. To prevent cell death, epithelial cells must protect themselves from direct damage induced by candidalysin and by the mechanical forces exerted by expanding hyphae. We identify two key Ca2+-dependent repair mechanisms employed by epithelial cells to withstand candidalysin-producing hyphae. Using camelid nanobodies, we demonstrate candidalysin secretion directly into the invasion pockets induced by elongating C. albicans hyphae. The toxin induces oscillatory increases in cytosolic [Ca2+], which cause hydrolysis of PtdIns(4,5)P2 and loss of cortical actin. Epithelial cells dispose of damaged membrane regions containing candidalysin by an Alg-2/Alix/ESCRT-III-dependent blebbing process. At later stages, plasmalemmal tears induced mechanically by invading hyphae are repaired by exocytic insertion of lysosomal membranes. These two repair mechanisms maintain epithelial integrity and prevent mucosal damage during both commensal growth and infection by C. albicans.


Assuntos
Candida albicans/metabolismo , Candidíase/patologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Lisossomos/metabolismo , Mucosa/fisiologia , Animais , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/fisiologia , Células Epiteliais/metabolismo , Exocitose/fisiologia , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno , Humanos , Hifas/crescimento & desenvolvimento , Camundongos , Mucosa/citologia , Mucosa/microbiologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Células RAW 264.7
12.
Nat Commun ; 13(1): 71, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013186

RESUMO

Filamentous actinobacteria such as Streptomyces undergo two distinct modes of cell division, leading to partitioning of growing hyphae into multicellular compartments via cross-walls, and to septation and release of unicellular spores. Specific determinants for cross-wall formation and the importance of hyphal compartmentalization for Streptomyces development are largely unknown. Here we show that SepX, an actinobacterial-specific protein, is crucial for both cell division modes in Streptomyces venezuelae. Importantly, we find that sepX-deficient mutants grow without cross-walls and that this substantially impairs the fitness of colonies and the coordinated progression through the developmental life cycle. Protein interaction studies and live-cell imaging suggest that SepX contributes to the stabilization of the divisome, a mechanism that also requires the dynamin-like protein DynB. Thus, our work identifies an important determinant for cell division in Streptomyces that is required for cellular development and sporulation.


Assuntos
Proteínas de Bactérias/metabolismo , Divisão Celular/fisiologia , Hifas/metabolismo , Esporos Bacterianos/metabolismo , Streptomyces/metabolismo , Proteínas de Bactérias/genética , Fenômenos Biológicos , Parede Celular , Hifas/citologia , Hifas/genética , Hifas/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Esporos Bacterianos/genética , Streptomyces/citologia , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento
13.
Sci China Life Sci ; 65(2): 412-425, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34031812

RESUMO

Autophagy is an evolutionarily conserved process in eukaryotes, which is regulated by autophagy-related genes (ATGs). Arthrobotrys oligospora is a representative species of nematode-trapping (NT) fungi that can produce special traps for nematode predation. To elucidate the biological roles of autophagy in NT fungi, we characterized an orthologous Atg protein, AoAtg5, in A. oligospora. We found that AoATG5 deletion causes a significant reduction in vegetative growth and conidiation, and that the transcript levels of several sporulation-related genes were significantly downregulated during sporulation stage. In addition, the cell nuclei were significantly reduced in the ΔAoATG5 mutant, and the transcripts of several genes involved in DNA biosynthesis, repair, and ligation were significantly upregulated. In ΔAoATG5 mutants, the autophagic process was significantly impaired, and trap formation and nematocidal activity were significantly decreased. Comparative transcriptome analysis results showed that AoAtg5 is involved in the regulation of multiple cellular processes, such as autophagy, nitrogen metabolism, DNA biosynthesis and repair, and vesicular transport. In summary, our results suggest that AoAtg5 is essential for autophagy and significantly contributes to vegetative growth, cell nucleus development, sporulation, trap formation, and pathogenicity in A. oligospora, thus providing a basis for future studies focusing on related mechanisms of autophagy in NT fungi.


Assuntos
Ascomicetos/fisiologia , Ascomicetos/patogenicidade , Proteína 5 Relacionada à Autofagia/metabolismo , Núcleo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Nematoides/microbiologia , Animais , Ascomicetos/classificação , Autofagossomos/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Núcleo Celular/genética , DNA Fúngico/metabolismo , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Mutação , Nitrogênio/metabolismo , Filogenia , Esporos Fúngicos/fisiologia , Transcrição Gênica , Virulência
14.
PLoS Genet ; 17(11): e1009924, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34788288

RESUMO

Higher fungi can rapidly produce large numbers of spores suitable for aerial dispersal. The efficiency of the dispersal and spore resilience to abiotic stresses correlate with their hydrophobicity provided by the unique amphiphilic and superior surface-active proteins-hydrophobins (HFBs)-that self-assemble at hydrophobic/hydrophilic interfaces and thus modulate surface properties. Using the HFB-enriched mold Trichoderma (Hypocreales, Ascomycota) and the HFB-free yeast Pichia pastoris (Saccharomycetales, Ascomycota), we revealed that the rapid release of HFBs by aerial hyphae shortly prior to conidiation is associated with their intracellular accumulation in vacuoles and/or lipid-enriched organelles. The occasional internalization of the latter organelles in vacuoles can provide the hydrophobic/hydrophilic interface for the assembly of HFB layers and thus result in the formation of HFB-enriched vesicles and vacuolar multicisternal structures (VMSs) putatively lined up by HFBs. These HFB-enriched vesicles and VMSs can become fused in large tonoplast-like organelles or move to the periplasm for secretion. The tonoplast-like structures can contribute to the maintenance of turgor pressure in aerial hyphae supporting the erection of sporogenic structures (e.g., conidiophores) and provide intracellular force to squeeze out HFB-enriched vesicles and VMSs from the periplasm through the cell wall. We also show that the secretion of HFBs occurs prior to the conidiation and reveal that the even spore coating of HFBs deposited in the extracellular matrix requires microscopic water droplets that can be either guttated by the hyphae or obtained from the environment. Furthermore, we demonstrate that at least one HFB, HFB4 in T. guizhouense, is produced and secreted by wetted spores. We show that this protein possibly controls spore dormancy and contributes to the water sensing mechanism required for the detection of germination conditions. Thus, intracellular HFBs have a range of pleiotropic functions in aerial hyphae and spores and are essential for fungal development and fitness.


Assuntos
Parede Celular/genética , Proteínas Fúngicas/genética , Esporos Fúngicos/genética , Trichoderma/genética , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Interações Hidrofóbicas e Hidrofílicas , Hifas/genética , Hifas/crescimento & desenvolvimento , Hypocreales/genética , Hypocreales/crescimento & desenvolvimento , Esporos Fúngicos/crescimento & desenvolvimento , Trichoderma/crescimento & desenvolvimento
15.
mBio ; 12(6): e0260021, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34781734

RESUMO

Acetylation and deacetylation of histones are key epigenetic mechanisms for gene regulation in response to environmental stimuli. RPD3 is a well-conserved class I histone deacetylase (HDAC) that is involved in diverse biological processes. Here, we investigated the roles of the Magnaporthe oryzae RPD3 (MoRPD3) gene, an ortholog of Saccharomyces cerevisiae Rpd3, during development and pathogenesis in the model plant-pathogenic fungus Magnaporthe oryzae. We demonstrated that the MoRPD3 gene is able to functionally complement the yeast Rpd3 deletion mutant despite the C-terminal extension of the MoRPD3 protein. MoRPD3 localizes primarily to the nuclei of vegetative hyphae, asexual spores, and invasive hyphae. Deletion of MoRPD3 appears to be lethal. Depletion of MoRPD3 transcripts via gene silencing (MoRPD3kd, where "kd" stands for "knockdown") has opposing effects on asexual and sexual reproduction. Although conidial germination and appressorium formation rates of the mutants were almost comparable to those of the wild type, in-depth analysis revealed that the appressoria of mutants are smaller than those of the wild type. Furthermore, the MoRPD3kd strain shows a significant reduction in pathogenicity, which can be attributed to the delay in appressorium-mediated penetration and impaired invasive growth. Interestingly, MoRPD3 does not regulate potassium transporters, as shown for Rpd3 of S. cerevisiae. However, it functioned in association with the target of rapamycin (TOR) kinase pathway, resulting in the dependency of appressorium formation on hydrophilic surfaces and on TOR's inhibition by MoRPD3. Taken together, our results uncovered distinct and evolutionarily conserved roles of MoRPD3 in regulating fungal reproduction, infection-specific development, and virulence. IMPORTANCE RPD3 is an evolutionarily conserved class I histone deacetylase (HDAC) that plays a pivotal role in diverse cellular processes. In filamentous fungal pathogens, abrogation of the gene encoding RPD3 results in either lethality or severe growth impairment, making subsequent genetic analyses challenging. Magnaporthe oryzae is a causal agent of rice blast disease, which is responsible for significant annual yield losses in rice production. Here, we characterized the RPD3 gene of M. oryzae (MoRPD3) in unprecedented detail using a gene-silencing approach. We provide evidence that MoRPD3 is a bona fide HDAC regulating fungal reproduction and pathogenic development by potentially being involved in the TOR-mediated signaling pathway. To the best of our knowledge, this work is the most comprehensive genetic dissection of RPD3 in filamentous fungal pathogens. Our work extends and deepens our understanding of how an epigenetic factor is implicated in the development and virulence of fungal pathogens of plants.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/patogenicidade , Proteínas Fúngicas/metabolismo , Histona Desacetilases/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Acetilação , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/genética , Histonas/genética , Histonas/metabolismo , Hifas/enzimologia , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/patogenicidade , Esporos Fúngicos/enzimologia , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/patogenicidade , Virulência
16.
mBio ; 12(6): e0300721, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34781745

RESUMO

The life cycle of filamentous fungi generally comprises hyphal growth and asexual reproduction. Both growth and propagation processes are critical for invasion growth, spore dissemination, and virulence in fungal pathogens and for the production of secondary metabolites or for biomass accumulation in industrial filamentous fungi. The CCAAT-binding complex (CBC) is a heterotrimeric transcription factor comprising three subunits, HapB, HapC, and HapE, and is highly conserved in fungi. Previous studies revealed that CBC regulates sterol metabolism by repressing several genes in the ergosterol biosynthetic pathway in the human fungal pathogen Aspergillus fumigatus. In the present study, we found dysfunction of CBC caused the abnormal asexual reproduction (conidiation) in submerged liquid culture. CBC suppresses the activation of the brlA gene in the central regulatory pathway for conidiation combined with its upstream regulators fluG, flbD, and flbC by binding to the 5'-CCAAT-3' motif within conidiation gene promoters, and lack of CBC member HapB results in the upregulation of these genes. Furthermore, when the expression of brlA or flbC is repressed, the submerged conidiation does not happen in the hapB mutant. Interestingly, deletion of HapB leads to enhanced transient cytosolic Ca2+ levels and activates conidiation-positive inducer Ca2+-CrzA modules to enhance submerged conidiation, demonstrating that CrzA works with CBC as a reverse regulator of fungal conidiation. To the best of our knowledge, the finding of this study is the first report for the molecular switch mechanism between vegetative hyphal growth and asexual development regulated by CBC, in concert with Ca2+-CrzA signaling in A. fumigatus. IMPORTANCE A precisely timed switch between vegetative hyphal growth and asexual development is a crucial process for the filamentous fungal long-term survival, dissemination, biomass production, and virulence. However, under the submerged culture condition, filamentous fungi would undergo constant vegetative growth whereas asexual conidiation rarely occurs. Knowledge about possible regulators is scarce, and how they could inhibit conidiation in liquid culture is poorly understood. Here, we demonstrated that the transcription factor heterotrimeric CBC dominantly maintains vegetative growth in liquid-submerged cultures by directly suppressing the conidiation-inductive signal. In contrast, calcium and the transcription factor CrzA, are positive inducers of conidiation. Our new insights into the CBC and Ca2+-CrzA regulatory system for transition control in the submerged conidiation of A. fumigatus may have broad repercussions for all filamentous fungi. Moreover, our elucidation of the molecular mechanism for submerged conidiation may support new strategies to precisely control vegetative growth and asexual conidiation in aspergilli used in industry.


Assuntos
Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/metabolismo , Fator de Ligação a CCAAT/metabolismo , Cálcio/metabolismo , Proteínas Fúngicas/metabolismo , Hifas/crescimento & desenvolvimento , Aspergillus fumigatus/genética , Fator de Ligação a CCAAT/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Hifas/genética , Hifas/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Reprodução Assexuada , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo
17.
mBio ; 12(5): e0252821, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34607458

RESUMO

In a number of elongated cells, such as fungal hyphae, a vesicle cluster is observed at the growing tip. This cluster, called a Spitzenkörper, has been suggested to act as a vesicle supply center, yet analysis of its function is challenging, as a majority of components identified thus far are essential for growth. Here, we probe the function of the Spitzenkörper in the human fungal pathogen Candida albicans, using genetics and synthetic physical interactions (SPI). We show that the C. albicans Spitzenkörper is comprised principally of secretory vesicles. Mutant strains lacking the Spitzenkörper component myosin light chain 1 (Mlc1) or having a SPI between Mlc1 and either another Spitzenkörper component, the Rab GTPase Sec4, or prenylated green fluorescent protein (GFP), are viable and still exhibit a Spitzenkörper during filamentous growth. Strikingly, all of these mutants formed filaments with increased diameters and extension rates, indicating that Mlc1 negatively regulates myosin V, Myo2, activity. The results of our quantitative studies reveal a strong correlation between filament diameter and extension rate, which is consistent with the vesicle supply center model for fungal tip growth. Together, our results indicate that the Spitzenkörper protein Mlc1 is important for growth robustness and reveal a critical link between filament morphology and extension rate. IMPORTANCE Hyphal tip growth is critical in a range of fungal pathogens, in particular for invasion into animal and plant tissues. In Candida albicans, as in many filamentous fungi, a cluster of vesicles, called a Spitzenkörper, is observed at the tip of growing hyphae that is thought to function as a vesicle supply center. A central prediction of the vesicle supply center model is that the filament diameter is proportional to the extension rate. Here, we show that mutants lacking the Spitzenkörper component myosin light chain 1 (Mlc1) or having synthetic physical interactions between Mlc1 and either another Spitzenkörper component or prenylated GFP, are defective in filamentous growth regulation, exhibiting a range of growth rates and sizes, with a strong correlation between diameter and extension rate. These results suggest that the Spitzenkörper is important for growth robustness and reveal a critical link between filament morphology and extension rate.


Assuntos
Candida albicans/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Hifas/genética , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Candida albicans/genética , Candida albicans/patogenicidade , Polaridade Celular , Citoesqueleto/metabolismo , Proteínas Fúngicas/metabolismo , Humanos , Hifas/crescimento & desenvolvimento
18.
mSphere ; 6(5): e0070721, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34585966

RESUMO

Epsins play a pivotal role in the formation of endocytic vesicles and potentially provide a linkage between endocytic and other trafficking pathways. We identified a Candida albicans epsin, ENT2, that bears homology to the Saccharomyces cerevisiae early endocytosis genes ENT1 and ENT2 and studied its functions by a reverse genetic approach utilizing CRISPR-Cas9-mediated gene deletion. The C. albicans ent2Δ/Δ null mutant displayed cell wall defects and altered antifungal drug sensitivity. To define the role of C. albicans ENT2 in endocytosis, we performed assays with the lipophilic dye FM4-64 that revealed greatly reduced uptake in the ent2Δ/Δ mutant. Next, we showed that the C. albicans ent2Δ/Δ mutant was unable to form hyphae and biofilms. Assays for virulence properties in an in vitro keratinocyte infection model demonstrated reduced damage of mammalian adhesion zippers and host cell death from the ent2Δ/Δ mutant. We conclude that C. albicans ENT2 has a role in efficient endocytosis, a process that is required for maintaining cell wall integrity, hyphal formation, and virulence-defining traits. IMPORTANCE The opportunistic fungal pathogen Candida albicans is an important cause of invasive infections in hospitalized patients and a source of considerable morbidity and mortality. Despite its clinical importance, we still need to improve our ability to diagnose and treat this common pathogen. In order to support these advancements, a greater understanding of the biology of C. albicans is needed. In these studies, we are focused on the fundamental biological process of endocytosis, of which little is directly known in C. albicans. In addition to studying the function of a key gene in this process, we are examining the role of endocytosis in the virulence-related processes of filamentation, biofilm formation, and tissue invasion. These studies will provide greater insight into the role of endocytosis in causing invasive fungal infections.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Parede Celular/microbiologia , Proteínas Fúngicas/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Antifúngicos/farmacologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Candida albicans/patogenicidade , Candidíase/microbiologia , Parede Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Hifas/citologia , Hifas/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Virulência
19.
PLoS One ; 16(9): e0257823, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34587206

RESUMO

Fungal hyphal growth and branching are essential traits that allow fungi to spread and proliferate in many environments. This sustained growth is essential for a myriad of applications in health, agriculture, and industry. However, comparisons between different fungi are difficult in the absence of standardized metrics. Here, we used a microfluidic device featuring four different maze patterns to compare the growth velocity and branching frequency of fourteen filamentous fungi. These measurements result from the collective work of several labs in the form of a competition named the "Fungus Olympics." The competing fungi included five ascomycete species (ten strains total), two basidiomycete species, and two zygomycete species. We found that growth velocity within a straight channel varied from 1 to 4 µm/min. We also found that the time to complete mazes when fungal hyphae branched or turned at various angles did not correlate with linear growth velocity. We discovered that fungi in our study used one of two distinct strategies to traverse mazes: high-frequency branching in which all possible paths were explored, and low-frequency branching in which only one or two paths were explored. While the high-frequency branching helped fungi escape mazes with sharp turns faster, the low-frequency turning had a significant advantage in mazes with shallower turns. Future work will more systematically examine these trends.


Assuntos
Crowdsourcing/métodos , Fungos/crescimento & desenvolvimento , Técnicas Analíticas Microfluídicas/instrumentação , Ascomicetos/crescimento & desenvolvimento , Basidiomycota/crescimento & desenvolvimento , Fenômenos Biológicos , Fungos/classificação , Hifas/classificação , Hifas/crescimento & desenvolvimento , Especificidade da Espécie
20.
J Microbiol ; 59(10): 911-919, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34491522

RESUMO

Candida albicans is an opportunistic human pathogen that exists as yeast, hyphal or pseudohyphal forms depending on pH, nutrients, and temperature. The morphological transition from yeast to hyphae, which is required for the complete virulence of C. albicans, is controlled by many transcription factors that activate or repress hypha-specific genes. The C. albicans transcriptional factor Cas5, a key regulator of genes involved in cell wall integrity, affects the susceptibility of C. albicans to fluconazole, an inhibitor of ergosterol synthesis. In this study, we found that deletion of CAS5 in C. albicans decreased the expression levels of a set of ergosterol biosynthesis genes, such as ERG2, ERG3, ERG5, ERG6, ERG11, and ERG24, resulting in the accumulation of lanosterol and zymosterol, which are intermediate metabolites in the ergosterol biosynthesis pathway. Interestingly, it was observed that the cas5Δ/Δ mutant could not maintain the yeast form under non-hypha-inducing conditions, while the CAS5-overexpressing cells could not form hyphae under hypha-inducing conditions. Consistent with these observations, the cas5Δ/Δ mutant highly expressed hypha-specific genes, ALS3, ECE1, and HWP1, under non-hypha-inducing conditions. In addition, CAS5 transcription was significantly downregulated immediately after hyphal initiation in the wild-type strain. Furthermore, the cas5Δ/Δ mutant reduced the transcription of NRG1, which encodes a major repressor of hyphal morphogenesis, while Cas5 overexpression increased the transcription of NRG1 under hypha-inducing conditions. Collectively, this study suggests the potential role of Cas5 as a repressor of hypha-specific genes during yeast-form growth of C. albicans.


Assuntos
Candida albicans/metabolismo , Hifas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Ergosterol/biossíntese , Regulação Fúngica da Expressão Gênica , Hifas/genética , Hifas/metabolismo , Lanosterol/biossíntese , Morfogênese , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...